Hamiltonian and Potentials in Derivative Pricing Models: Exact Results and Lattice Simulations
نویسنده
چکیده
The pricing of options, warrants and other derivative securities is one of the great success of financial economics. These financial products can be modeled and simulated using quantum mechanical instruments based on a Hamiltonian formulation. We show here some applications of these methods for various potentials, which we have simulated via lattice Langevin and Monte Carlo algorithms, to the pricing of options. We focus on barrier or path dependent options, showing in some detail the computational strategies involved.
منابع مشابه
A Path Integral Approach to Option Pricing with Stochastic Volatility: Some Exact Results
The Black~scholes formula for pricing options on stocks and other securities has been generalized by Merton and Garman to the case when stock volatility is stochastic. The derivation of the price of a security derivative with stochastic volatility is reviewed starting from the first principles of finance. The equation of Merton and Garman is then recast using the path integration technique of t...
متن کاملTHE SPINLESS SALPETER EQUATION AND MESON DYNAMICS
Applying the variational method, the spinless reduced Bethe-Salpeter (RBS) equation is solved for the mesonic systems, and the mass spectra are obtained. The method is applied to the Hamiltonian with the Gaussian and hydrogen-type trial wave functions, and different potential models are examined. The results for the different potentials are in challenge in light mesons, while they are consisten...
متن کاملPricing Asian Options on Lattices
Path-dependent options are options whose payoff depends nontrivially on the price history of an asset. They play an important role in financial markets. Unfortunately, pricing path-dependent options could be difficult in terms of speed and/or accuracy. The Asian option is one of the most prominent examples. The Asian option is an option whose payoff depends on the arithmetic average price of th...
متن کاملLattice numerical simulations of hydraulic fractures interacting with oblique natural interfaces
The hydraulic fracturing propagation is strongly influenced by the existence of natural fractures. This is a very important factor in hydraulic fracturing operations in unconventional reservoirs. Various studies have been done to consider the effect of different parameters such as stress anisotropy, toughness, angle of approach and fluid properties on interaction mechanisms including crossing, ...
متن کامل47 v 1 1 7 O ct 2 00 5 The triton and three - nucleon force in nuclear lattice simulations
We study the triton and three-nucleon force at lowest chiral order in pionless effective field theory both in the Hamiltonian and Euclidean nuclear lattice formalism. In the case of the Euclidean lattice formalism, we derive the exact few-body worldline amplitudes corresponding to the standard many-body lattice action. This will be useful for setting low-energy coefficients in future nuclear la...
متن کامل